Reg No.: \qquad Name: \qquad

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Third Semester B.Tech Degree (S,FE) Examination January 2022 (2015 Scheme)

Course Code: MA201
 Course Name: LINEAR ALGEBRA AND COMPLEX ANALYSIS

Max. Marks: 100
Duration: 3 Hours

PART A

Answer any two full questions, each carries 15 marks

a) Define continuity of a complex valued function $f(z)$ at a point $z=z_{0}$. Also check whether the function $\mathrm{f}(\mathrm{z})=\left\{\begin{array}{ll}\frac{\operatorname{Im}\left(z^{2}\right)}{|z|^{2}}, & z \neq 0 \\ 0 & z=0\end{array}\right.$ is continuous at $\mathrm{z}=0$.
b) Check whether $U(x, y)=x^{3}-3 x y^{2}+3 x^{2}-3 y^{2}+1$ is harmonic .If so find its harmonic conjugate.
a) Show that if $f(z)=u+i v$ is an analytic function with constant modulus, then f is a constant.
b) Write the real and imaginary parts of the transformation $\mathrm{f}(\mathrm{z})=\frac{1+i z}{1-i z}$. Also find the image of $|z|<1$ under this transformation.
a) i) Find the image of the circle $x^{2}+y^{2}-6=0$ under the transformation $w=\frac{1}{z}$.
ii) Find the image of the strip $1<y<2$ under the transformation $w=\operatorname{sinz}$
b) Find the bilinear transformation which maps $(-1,-i, 0)$ to ($0,-i, 2$). Also find the critical points of this transformation.

PART B

Answer any two full questions, each carries 15 marks

a) Evaluate $\int_{0}^{3+i} \bar{z}^{2} d z$ along
a) the line $x=3 y$
b) along $\mathrm{z}(\mathrm{t})=3 \mathrm{t}+\mathrm{it}{ }^{2}$
b) Using Cauchy's integral formula Evaluate the integral $\int_{C} \frac{e^{z}}{(2 z-1)^{2}} d z$ over the circle $|\mathrm{z}|=1$.
a) Find the singular points and residue at singular point of the function $\mathrm{f}(\mathrm{z})=\frac{\operatorname{tanz}}{z^{2}+1}$ which lie inside the circle $|z|=3 / 2$.
b) Find the Laurent series of $f(z)=\frac{1}{z(z-2)(z-5)}$ valid in the region $2<|z|<5$ around $z=0$.

6 a) Using residue theorem, evaluate $\int_{C} \frac{d z}{\left(z^{2}+4\right)^{2}}$ over the circle $|z-\mathrm{i}|=2$.
b) Evaluate $\int_{0}^{2 \pi} \frac{d \theta}{5+3 i s i n \theta}$.

PART C
 Answer any two full questions, each carries 20 marks

7
a) Find the eigen values and eigen vectors of the matrix $\left[\begin{array}{ccc}1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1\end{array}\right]$.
b)

Find the rank of the matrix $\left[\begin{array}{ccc}1 & 2 & -1 \\ 0 & 0 & 2 \\ -1 & -2 & 3 \\ 2 & 4 & 0\end{array}\right]$
c) Test for consistency and solve the following system
$x-y+z=1$
$2 x+y-z=2$
$5 \mathrm{x}-2 \mathrm{y}+2 \mathrm{z}=5$.
8 a)
a) Find the basis and dimension of raw space and column space of the matrix $\left[\begin{array}{llll}1 & 2 & 0 & 1 \\ 1 & 2 & 1 & 2 \\ 0 & 0 & 1 & 1\end{array}\right]$
b) Let $\mathrm{A}=\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 0 & 1\end{array}\right]$ find AA^{T} and $\mathrm{A}^{\mathrm{T}} \mathrm{A}$ and their traces.
c) Check whether the vectors $(1,1,1),(1,-1,1),(1,1,-1)$ are linearly independent.

9 a) Write down the matrix associated with the quadratic form $3 x^{2}+3 y^{2}+2 x y=1$. Also convert it to canonical form and find the corresponding transformation.
b) Diagonalize the matrix $\mathrm{M}=\left[\begin{array}{ccc}3 & 0 & 0 \\ -3 & 4 & 9 \\ 0 & 0 & 3\end{array}\right]$.

